Snare-Mediated Membrane Fusion is a Two-Stage Process Driven by Entropic Forces
نویسندگان
چکیده
منابع مشابه
Entropic forces drive self-organization and membrane fusion by SNARE proteins.
SNARE proteins are the core of the cell's fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes ("SNAREpins") with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREp...
متن کاملVariable cooperativity in SNARE-mediated membrane fusion.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex drives the majority of intracellular and exocytic membrane fusion events. Whether and how SNAREs cooperate to mediate fusion has been a subject of intense study, with estimates ranging from a single SNARE complex to 15. Here we show that there is no universally conserved number of SNARE complexes involved ...
متن کاملImaging single membrane fusion events mediated by SNARE proteins.
Using total internal reflection fluorescence microscopy, we have developed an assay to monitor individual fusion events between proteoliposomes containing vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and a supported planar bilayer containing cognate target SNAREs. Approach, docking, and fusion of individual vesicles to the target membrane were quantifi...
متن کاملPerformance-driven Entropic Information Fusion
Advances in technology have resulted in acquisition and subsequent fusion of data from multiple sensors of possibly different modalities. Fusing data acquired from different sensors occurs near the front end of sensing systems and therefore can become a critical bottleneck. It is therefore crucial to quantify the performance of sensor fusion. Information fusion involves estimating and optimizin...
متن کاملSec1p directly stimulates SNARE-mediated membrane fusion in vitro
Sec1 proteins are critical players in membrane trafficking, yet their precise role remains unknown. We have examined the role of Sec1p in the regulation of post-Golgi secretion in Saccharomyces cerevisiae. Indirect immunofluorescence shows that endogenous Sec1p is found primarily at the bud neck in newly budded cells and in patches broadly distributed within the plasma membrane in unbudded cell...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2019
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2018.11.1703